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Definitions
• APSP: All-pairs shortest paths
• SSSP: Single-source shortest paths (with source node s)
• Incremental algorithm: allows edges insertions
• Decremental algorithm: allows edge deletions
• The distance between u and v in G is denoted by dG(u, v).
• The level `(v) of a node v in a tree is the distance of v to the root.
• A distance estimate d ′(u, v) is an (α,β)-approximation of d(u, v)

if d(u, v) ≤ d ′(u, v) ≤ αd(u, v) + β

SSSP: Deterministic incremental algorithm

Result: • Approximation: (1 + ε, 0)
• Total update time: Õ(m3/2n1/4)
•�ery time: O(1)

Idea: Try to be lazy, i.e., keep BFS tree for as long as possible

Algorithm: a�er insertion of edge (u, v)
If `(v) < `(u) – δ: recompute BFS tree rooted at s
A�er κ insertions since last recomputation: recompute BFS tree

→ Algorithm guarantees additive error of κδ

Lemma: If G′ results from G by inserting edges and there is v s.t.
dG′(v , s) ≤ dG(v , s) – δ, then

∑
x dG′(x , s) ≤

∑
x dG(x , s) –Ω(δ2).

→ Number of BFS tree computations: O(m/κ + n2/δ2)

Additive approximation can be converted into (1 + ε, 0)-approximation
Algorithm also works in distributed se�ing (CONGEST model)

APSP: Decremental algorithm

Result: • Approximation: (1 + ε, 2)
• Total update time: Õ(n5/2)
•�ery time: O(1)

Idea: Run algorithm of Rodi�y and Zwick [4] on sparse emulator
Problem: Edges might be inserted into emulator

We use an emulator H with the following properties:
• H is a weighted graph with Õ(n3/2) edges that provides (1 + ε, 2)-

approximation of distances in G
• H can be maintained under deletions in G in total time Õ(mn1/2)
• H is locally persevering: Every path of G of length at most 2/ε

is either contained in H or can be (1 + ε, 2)-approximated by a
path P ′ in H whose edges are in H since the beginning.

Monotone Even-Shiloach tree
• Even-Shiloach tree maintains shortest paths from a root node r

up to given depth (with corresponding levels `(v))
→ Central tool in algorithm of Rodi�y and Zwick [4]
• Our extension to insertions of edges: if `(v)+wH(u, v) < `(u), then

make v the parent of u and do not update the level of u.
→ Correctness follows from locally persevering property of H
→ Intuition: decreasing `(u) to `(v) + w(u, v) is not necessary as
`(u) already provides (1 + ε, 2)-approximation of dG(u, r).

→ Inductive argument gives (1+ε, 2)-approximation for all nodes

APSP: Deterministic decremental algorithm

Result: • Approximation: (1 + ε, 0)
• Total update time: O(mn log n)
•�ery time: O(log log n)

Idea: Derandomize algorithm of Rodi�y and Zwick [4]
Motivation: Probabilistic algorithms require oblivious adversary

Probabilistic center cover [4]
• Each node becomes center with probability c ln n

δ (for constant c)
• With high probability, every node is in distance δ to a center

(if connected component has size at least δ)
• Maintain Even-Shiloach trees of depth δ for all Õ(n/δ) centers
→ Total time: Õ(mδn/δ) = Õ(mn)

Deterministic center cover
• Greedily open centers at uncovered nodes
→ Each center c covers all nodes in distance 2rc = δ
→ Number of centers a�er initialization: O(n/δ)
• If connected component of center becomes too small:
→ Move center c out of component C and reduce rc by |C|
→ Nodes in small component C become assigned to center
• At termination: all nodes in distance rc assigned to center c
→ Each node is assigned to at most one center
→ Each center has Ω(δ) assigned nodes
→ Total number of centers: O(n/δ)
• Moving Even-Shiloach trees on centers
→ Relocating tree to a neighboring node costs additional O(m)
→ Total “moving distance” of all centers is at most n
• Total time O(mδn/δ + mn) = O(mn) for center cover

SSSP: Decremental algorithm

Result: • Approximation: (1 + ε, 0)
• Total update time: Õ(n9/5+o(1) + mo(1))
•�ery time: O(1)

Step 1: Õ(mn4/5 + m3/2n1/4) time algorithm
• Based on lazy recomputation of BFS tree and faster center cover

Step 2: Run modified algorithm on sparse emulator
• Thorup and Zwick [5]: (1 + ε, 2(1 + 2

ε)
k–2)-emulator

• Monotone Even-Shiloach tree preserves this approximation
• Thorup-Zwick emulator provides further needed properties

(as observed by Bernstein and Rodi�y [6])
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